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On the characterization of base-p number representations  

 

 

Summary: We treat number representations with natural bases 1p . For this, we show 

that for prime bases p  the digits of the representation 
1 1 0m m na a a a a

 of a given 

number z  can be characterized by means of certain binomial coefficients. The main 

result is as follows: provided na  is the n-th digit of the base-p representation of z  then 

the congruency  modn
n

z
a p

p

 
 

 
 

 holds true. In addition, this statement is proved to 

be false in the general case of non-prime bases.  

 

 

Zusammenfassung: Wir betrachten polyadische Zahldarstellungen mit natürlichen Basen 

1p  und zeigen, dass für Primzahlbasen p  die entsprechenden Ziffern 

1 1 0m m na a a a a
 mittels bestimmter Binomialkoeffizienten charakterisiert werden 

können. Für die n-te Ziffer na  in der Darstellung von z zur Basis p  besteht die 

Kongruenz  modnnn

z z
a p

pp

   
        

. Für Nichtprimzahlbasen trifft dies im 

Allgemeinen nicht zu.  

 

 

 

By Hieronymus Fischer 

 

 

1. Introduction 

We discuss base-p number representations z :=
1 1 0m m na a a a a

 with natural bases 1p . In 

polynomial notation the unique representation is 



m

paz
0


 , pa  0 . For a given non-

negative number z the parameters  a  can be determined by means of a simple algorithm. This 

follows from the polynomial representation since the integer part of 
np

z
 is 




m

n

n

n paa
1


  and so 

)(mod p
p

z
a

nn 







  for mn 0 . In the following we will demonstrate that for prime bases p the 

parameters, or rather the digits na  fulfill a quite similar congruency in terms of binomial coefficients. 

 

We provide the main result for arbitrary prime bases in section 3. An alternative approach, which 

results in a weaker statement, will be discussed in section 2. There we highlight the case p=2, 

especially.  

 

We start with some definitions. 
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Definition 1-1 

For natural numbers , 0n z  we use the notation 
 z

na  to indicate the n-th coefficient of  the 

base-p representation of z . Explicitly 
 

:
z

n na a  if 
0

, 0
m

z a p a p

 


   , 0 n m   and 

 
: 0

z

na   for n m . 

Definition 1-2 

Following the Kronecker symbol we define 


 


else,0

,1
:),(

yx
yx  

Definition 1-3 

For non-negative numbers z represented as 
0

, 0
m

z a p a p

 


   , p prime, we set  

1

( ) : (0, )
k

nk

n

z a



 




 , with 0,n k  , 0 ,n k m  . 

2. Number representation versa prime divisors of certain binomial coefficients 

We ask for the highest power of a prime p  dividing the binomial coefficient 
n

z

p

 
 
 
 

. For the general 

case of 






 

k

km
 this has been discussed by Kummer first. Essentially, the findings presented in this 

section can also be derived from Kummer’s results. However, our goal is to get predicates on the 

radix-p representation and so a different approach seems to be more appropriate. The following lemma 

provides an exhaustive answer to the posed question in terms of the base-p representation of z . As an 

application we prove an obvious corollary for representations of z  with prime radixes. Especially we 

will characterize the representation of binary numbers (s. Theorem 2-2).  

Lemma 2-1 

Let n and z be natural numbers, and let p  be a prime. Suppose that 
0

, 0
m

a p a p

 


  , is 

the base-p representation of z.  

Then : rq p , where 
1

: ( )
m

nk

k n

r z
 

   , is the highest power of p  dividing 
n

z

p

 
 
 
 

 

 

Proof: 

For natural x  we set  

 

(2-1)  0( ) : max  | t

pE x t p x   

 

and  
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(2-2)  0( ) : max  | !t

pF x t p x   

 

By definition of the factorial, !x =  1 2 3 4 5 6 1x x         , we see, that the multiples of p  

arise 
x

p

 
 
 

-times in this product whereas the multiples of 
2p  occur 

2

x

p

 
 
 

-times. In general, the 

multiples of a given power 
kp  appear exactly 

k

x

p

 
 
 

 times as a factor in !x . For that reason, the 

exponent of the highest power of x  dividing !x  is determined by the sum of all such terms with 
kp x , what means log pk x . Hence 

 

(2-3) 

 














x

k
kp

p

x
xF

 log

1

p

)(  

 

Based on this we are able to determine the highest power of p  dividing 







np

z
 by simply evaluating 

the exponent : p
n

z
r E

p

  
   
  
  

 with respect to 
 

!

! !n nn

z z

p z pp

 
 

   

 . Obviously, we have  

 

(2-4) )()()( n

p

n

pp pzFpFzFr   

 

By definition of z  we get log pm z    . Further we set : log ( )n

pm z p     .  

It follows 

 

(2-5) 












m

k
kp

p

z
zF

1

)(  

 

(2-6) 

1

1

( )

1

1

nm
n

p k
k

n
n k

k

n

p
F p

p

p

p

p







 
  

 










  

 

(2-7) 




























 

































 


m

nk
k

nnn

k
k

m

k

kn

k

m

k
k

n
n

p

p

pz

p

p

p

z

p
p

z

p

pz
pzF

11

1

1

1

1

)(
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For the exponent we subsequently obtain by (2-4)  

 

(2-8) 











 











m

nk
k

nm

nk
k p

pz

p

z
r

11

  

 

Now, for n m  the equality m m   is evident by definition of m  and m . On the other hand, if 

m m   then stringently n m , from which follows 0r  , since both sums in (2-8) evaluates to zero 

in this case. In the following we may restrict ourselves to n m  and thus m m  .  

 

To come to (2-8) we first get 

 

(2-9) 









 m

k

k

k
pa

p

z




  

 

and 

 

(2-10) 
kn

k
k

m

k

k

k

n

ppapa
p

pz 








 



1

1







  

 

The second sum in (2-10) is non-negative and less than one. Hence, for k n , the integer part yields 

 

(2-11) 
kn

m

k

k

k

n

ppa
p

pz 



 






 




  

 

With the definition  

 

(2-12) 

1

1

:
k

k n k

nkD a p p





 



   

 

it follows for k n   

 

(2-13) 

n m
k

nkk
k

z p
a p D

p










 
     

 
  

 

Now, we must distinguish whether or not the difference nkD  is negative. It is non-negative, if there is 

an index , n k   , such that . The difference becomes negative, iff  for all 

, n k   . The absolute values always are less then 1. Therefore, we get 

 

(2-14) 
1, , : 0

0, else
nk

IN n k a
D

      
   


 

 

Together with (2-8), (2-9) and (2-13) this results in 

 

0a 0a
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(2-15) 

1 1

1 1

1

nm m

k k
k n k n

m m m m
k k

nk

k n k k n k

m

nk

k n

z z p
r

p p

a p a p D

D

 

 
 

   

 

     

 

   
    

   

 
      

 

    

 

   



 

 

Because of (2-14) we may replace 
1

(0, ) ( )
k

nk nk

n

D a z



 




        from which follows 

 

(2-16) 
1

( )
m

nk

k n

r z
 

   

 

This is also true for the case n m . Thus 
( )

1

nk

m
zr

k n

p p


 

   is the highest 







np

z
 dividing power of 

p .  

 

For binary numbers the exponent r  of the highest power of 2 dividing 
2n

z 
 
 
 

 can be evaluated very 

easily. Provided z  is given by 
0

: 2
m

z a 




 ,  0,1 ,a   then the lemma above yields 

 
1

1

: 1
km

k n n

r a





  

  . With respect to Definition 1-2 and Definition 1-3 this is an immediate result of 

Lemma 2-1 because of  0,1 ,a   and therefore (0, ) 1n na a   .  

 

Theorem 2-1 

Let z be a natural number, and let p  be a prime. Suppose 
0

m

a p




 , ,0 pa    is the base-p 

representation of z.  

Then, for all n , mn 0 :  0 mod
n

z
p

p

 
 

 
 

 if and only if 0na  . 

 

Proof: 

We have to demonstrate: p  divides 







np

z
   0na .  
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For 
nz p  we have 1








np

z
 and so 1 0na    in accordance with the statement. In the following 

we may presume 
nz p  therefore. Due to Lemma 2-1, the exponent of the highest power of p  

dividing 
n

z

p

 
 
 
 

 is determined by 
1

1 1

: ( ) (0, )
km m

nk

k n k n n

r z a



 


    

   .  

Obviously, 0r  is equivalent with )(mod0 p
p

z

n















. Thus we are ready, if we can verify 0r  

  0na .  

For 0na  we also have (0, ) 0na  . Consequently all products 
1

(0, )
k

n

a








 , n k m  , 

evaluates to zero, hence 0r . On the other hand, the latter forces 
1

(0, ) 0
k

n

a








  for all k , 

n k m  . In particularly this means (0, ) 0na  , Therefore 0na  , i.e. 0na  , respectively. 

 

The equivalence 0r    0na  is verified therewith.  

Theorem 2-2 

Let z be a natural number with 
0

: 2
m

z a 




 ,  0,1 ,a   as the binary representation of z.  

Then, for all n , mn 0 , the congruency  mod 2
2

n
n

z
a

 
  
 
 

 holds true. 

 

Proof: 

By reason of Theorem 2-1 we have  0 mod 2 0
2

n
n

z
a

 
   

 
 

. Since the values na  are either 0 or 

1, the proposition is verified.  

 

3. The characterization of number representations of prime radix 

In this section we prove the main result on the characterization of number representations of prime 

radix (s. Theorem 3-1).  

 

First of all we recall some useful basics concerning the residue calculus in p . Most important: for 

prime numbers p  p  is a field. The element  1 1 modp p    is self-invers. Due to the fact that 

all the residues  2,3, , 2p   have unique inverses unlike 1 and 1p  , the factorial congruency  

 

(3-1)    1 ! 1 modp p    

 

plainly holds true. With the commonly used convention       : 1 2 1
k

n n n n n k        we 

have  
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(3-2) 
 

 mod
p

n n
p

p p

 
   

 
 

 

since any residue  1, 2,3, , 1p  modulo p  arises exactly once in the product  
p

n  (for n p ) 

and accurately one of these values is divisible by p . For n p  both sides vanishes anyway. Thus, 

the ‘size’ of the left hand side quotient is given by the integer part of the fraction 
n

p
. If we consider 

multiples of p  in particular, we obtain subsequently 

 

(3-3) 
 

 mod
p

np
n p

p
   

 

By reason of   !
k

n
n k

k

 
  
 
 

 we may write the latter as    1 ! mod
np

p n p
p

 
   

 
 

 what leads to 

the congruency  

 

(3-4)  mod
np

n p
p

 
 

 
 

 

 

immediately. The following representation for the factorial of a product is useful sometimes. 

 

(3-5)    
1

!
m

n
m n n






   

 

This formula is an outcome of the following consideration:  

 

(3-6) 

       

           

           

       

     

           

 
1

! 1 2 1

1 1 1 1 2 1 1

2 2 1 2 2 2 1

2 2 1 2 2 2 1

1 2 1

1 2 2 1
n n nn n

m

n

m n mn mn mn mn n

m n m n m n m n n

m n m n m n m n n

n n n n n

n n n n n

mn m n m n n n

n





        

           

           

       

      

    



 

 

Of course, we may notate this in terms of binomial coefficients too: 
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(3-7)    
1

! !
m

m
n

m n n
n





 
   

 
 

  

 

By the way: if we transpose the roles of m  and n , the symmetry of that formula becomes self-

evident. In that case we obtain      
1 1

!
m n

n m
n m n m

 

 
 

    . 

When dividing the products of appropriate factorials, we get a concise result, as follows from the 

preceding.  

 

(3-8) 
 

 
 

1

!

!

m

n
k

m n
n

k n 


 





 , m k  

 

The deduction principle presented in the next formula is most important for the following. 

 

(3-9) 

 

 

 

1

1

1

!

!

k mn

k

mn

m

n

k mn

k

k

k n















 








 

 







 

 

This can be verified analogous to (3-6). With respect to the determination of definite congruences 

modulo p  this factorial relations are helpful when used in connection with (3-3). For example, we 

achieve  

 

(3-10) 

 
 

 

 

   

1

1

1

! 1

! !

1

!

1

!

1 mod

m

m m p

m
p

m

m

mp
p

m p m p

p

m p

m

p























 

 







 

 

The binomial coefficients relevant in this section, can be treated analytically than. In doing so, from 

(3-5) (setting 
1nm p   and n p ) we get 

 

(3-11)      
1 1

1
1

1 1

! ! !

n n
n

p p
pn n

p

p
p p p p p

p 




 




 

 
     

 
 

   

 

Further 
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(3-12)        1

1 1

! ! !

n n
n

mp mp
mpn n

p

p
mp mp p p p

p 




 

 
     

 
 

   

 

as well as 

 

(3-13) 

    

   
1 1

1

1 1

1 1

! !

!

n n n n
n n

n n n n

mp p mp p
mp p

p

mp p mp p p

p
p p

p 




 


 

 


 

   

 
   

 
 

 
 

 

Altogether, we obtain the relation 

 

(3-14) 

 
 

 

   

 

 

1

1

1

1

1 1

1

1

1 1

1

1

!

! !

n n

n n

n n

n

n

n n n n

n nn

mp p

p

mp p

p p

mp p

p
mp

p

p

mp p mp p

mp pp

p

p p

p

p



 







 













 







 



 



  
  
 
 









 





 

 

Hence 

 

(3-15) 

 

 

1

1

1
1

1

1

n

n

p
n

n n
p

pn

p

mp pmp p

p p




















 
  
 
 





 

 

Based on this preparation we are now able to verify that statement of congruency recorded below. 

Lemma 3-1 

For prime numbers p and 0,m n , the following holds true 

 

(3-16) 

1

1 (mod )

n n

n

mp p
p

p

 
  
 
 

 

 

To prove this, we refer to (3-15) and will initially show the evidence of a further lemma by induction.  
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Lemma 3-2 

For prime numbers p  and 0 ,m n  , the following holds true 

 

(3-17)      
11

1
1

1

1

1 mod

n
n np p p

np
p

p
p mp p p













    

 

Proof: 

We denote the left hande side of (3-17) by ( )F n . Setting  1n   we get 

 

(3-18) 

 

  

01

1

1

(1)

1

p p
p

p

p

F p mp p

mp p

p












 





 

 

and so, by (3-3), 

 

(3-19) 

 

   
1

1

(1) 1

1 mod
p

p

F mp

p




  

 

 

 

For the induction step we conclude as follows: 

 

(3-20) 

 

  

     

1

1

1

1

21

1

1
1

1

1

1

11

1

( 1)

1 mod

n
n

n
n

n

n
n

n

p p
np

p

n
p p

ppp

p p
p np

F n p mp p

mp p
p p

p

p p mp p









































  




  







 

 

Here, the very last conversion holds true by reason of (3-3). Further we get 

 

(3-21) 

   

     

1 1

11

1 1

1

11

1

( 1) 1

1 mod

n
n n

n

n
n

n

p p p
p np

p p
p np

F n p p mp

p mp p

 







 




 








    

   

 



 

 

Very analogous to the deduction achieved in (3-9) we verify  

 

(3-22)    
1

1 1

1 1

n np p
n n

p
mp mp p

 

 



 

 

     

 

Thus, we subsequently obtain the congruences  
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(3-23) 

   

   

   

1

1

1

11

1

1

1

1

1

( 1) 1

1 1

1 mod

n
n

n

n
n

n

p p
p np

p

p
p

p

p

p

F n p mp p

p
























   

   

 



 

 
 

Now we are able to complete the proof of Lemma 3-1: 

Due to (3-15) and (3-17) we have the relation 

 

(3-24) 

 

 

 

 

1

1

1

11
1

1

1

1

1

1

1

1

1

1

1

1 (mod )

n
n

n
n

n

n

p p
np

n n
p

pn p
p

p

p

p

p

p

p mp pmp p

p
p p

p




































  
  
 
  












 

 

where the denominator above is determined by (3-17) when setting 0m   there.  

Theorem 3-1 

Let z be a natural number, and let p be a prime number. Suppose 
0

m

a p




 , ,0 pa    is the 

representation of z in radix p. Then )(mod p
p

z
a

nn 







  for mn 0 . 

Proof:  

We perform the proof by induction over the numbers z to be represented. The verification must be 

done for all n , mn 0 . Thereby we may restrict ourselves on 0n , since 
0

 
 

 
 

z
z

p
 and 

0 (mod )z a p  which implies  that the statement is evidently true for n=0.  

For a given n  the induction starts with 
npz  . The formula is trivially true in that case. For the 

induction step 1zz  we rest on the following relation for binomial coefficients 

 

(3-25)    11
1

















 
z

p

z
pz

p

z
n

n

n
 

 

On both sides, we consider the residue classes modulo p . The corresponding values for the 

remainders of 
n

z

p

 
 
 
 

 modulo p  will be denoted by  ,a a n z .  
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In general, we express 
 
 
 
 

n

z

p
 as  ,p a n z   with an appropriate integer 0 . By induction 

hypothesis    
,

z

na a n z a   holds true. Likewise, there exists an integer 0  and a 

 , 1 0a a n z   , such that 
1 

   
 
 

n

z
p a

p
 .  

It is necessary to show, that 
 1z

na  (the n-th digit of the radix-p representation of z+1) equals 

 , 1a a n z  .  

In the following, we suppress the superscript index in the base-p representation of z to shorten the 

notation; in doing so, we write na  instead of 
 z

na . Explicitly we begin with 

 

(3-26) papaz
m


0

0,:





  

 

and define 

 

(3-27) 
  0

0

max ,0 : 1 , if 1
:

0, else

k k a p a p
m

         
 


 

 

So that we get 

 

(3-28)   



m

m

m

m papaz
10

0

0
11




  

 

and continuing 

 

(3-29) 

   0

0

0

11

0

1 1

0

1

0

1 ( 1) 1 ,

1 ,

( 1) ,

n

n

n

n

n

n

mn m
m m

m m

m n m

m
n

n

m m

n m

a p a p p p a p a p m n

z p a p m n

p p a p m n

  

 

  







 



 



    





 


       





   




  


  



 

 

 

Herein, the auxiliary integer nm  is defined by 

 

(3-30)  0min:  kn ankm  

 

Further, substituting  

 

(3-31) 



m

k

k

k paA



:  
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(3-32)   












 
m

m

kkm

m

m

n

k
n

k

k

k

n

n

n

n

papapppaB
1

11

1)1(:












  

 

we can write (3-28) and (3-29) shorter as 

 

(3-33)    0

00 111
m

mm ppAaz   

 

and 

 

(3-34) 

  
 

  

0

0 0

0

0 0

0 0

0

1 0

1 0

0

1 ,

1 ,

1 ,

m

m m

mn

m m

m n m n n

m

a B p p m n

z p a A p p m n

p A p p m n





 

   



    


  


 

 

With respect to pam 1
0

 (by definition of m0) and the primality of p we are allowed to conclude 

 1
1

(mod )
z

n
n

z
a p

p


 

 
 
 

. To understand this we resort to (3-25). There we explicitly substitute the 

binomial coefficients as described above. So that we obtain 

 

(3-35)      1 1     n

np a z p p a z   

 

For the detailed discussion we distinguish between three different cases: 

 

(i)  0 m n , by definition of 0m  we have 
 1


z

n na a  then. 

(ii)  0 m n , by definition of 0m  we have 
 1

1

 

z

n na a  then. 

(iii)  0 m n , by definition of 0m  we have 
 1

0



z

na  then. 

 

Ad (i): From (3-33) and (3-34) it follows  

 

(3-36)          0 0

0 0 0 01 11 1       
m m

m m n m mp a a B p p p a a A p p   

 

where  : , 1a a n z  . Further we get  

 

(3-37) 

         

 

0 0 0 0

0 0

2

1 1

1 1

1 1 

 

      

 

m n m m m

n m m

a a a A B p a p

a A aB p

   
 

 

Since p is a prime number and 
0

0 1  ma p , this results in 0 (mod ) na a p , what means 

   1
mod

z

n na a a p


  . 

 

Ad (ii): Here we distinguish the two sub-cases 0na  and 0na . First of all, we treat 0na . By 

(3-33) and (3-34) we have the relation 
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(3-38)        1 11      n n

n n n n np a a A p p p a a A p p   

 

This can be transformed to  

 

(3-39)          2

1 11 1         n n n n n n na a a A p a a A p a a p     

 

Herein, the term na  is relatively prime to p , since 0  na p  and p  is prime. For that reason, we 

obtain    1 0 modna a p   , consequently        1
, 1 1 mod

z

n na n z a a a p


     .  

 

Now, we consider the case 0 m n  with 0na . By definition of nm , then 0nm m  holds true. 

Further it follows by (3-27), (3-28) and (3-29) 

 

(3-40) 

1

0

1 1 ( 1)
n

n

n

n m

m

mn

m

z p p a p

p A p

 


 



 

    

 

 
 

 

Hence, 1z   suffices the preconditions of Lemma 3-2 (setting 
1

: n

n

m n

mm A p
 

  therein), i.e.,  

 

(3-41)  
1

1 mod

n

n

m n

m

n n

z A p p
p

p p

   
   

   
   

 

 

Subsequently we obtain 
   1

( , 1) 1 mod
z

na n z a p


   . 

 

Ad (iii): In this case (3-25) reads as follows 

 

(3-42)          0 0 0

0 0 0 11 1
 

      
m n m n mn

m n m mp a p A p p p a a A p p   

 

This can be transformed to  

 

(3-43) 

       

  

0 0 0

0 0 0

0 0

0

11 1

1

  



 

     

  

m n m n m n

m n m m

m n m n

m

a p A p p a a A p p

p A p p





 

 

The term in parentheses on the left hand side evaluates to the remainder 1 (mod ) p  evidently. The 

right hand side is a multiple of p. Thus we achieve    1
, 1 0 (mod )

z

na n z a a p


    .  

 

 

The proposition formulated as Theorem 3-1 can be verified by an alternative approach too. In doing so 

we resort on the argumentation presented at the beginning of this section. There we discussed the 

products  
l

k . Then, if l  is a power, say 
nl p , we obtain 
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(3-44) 

   

 

1

1

1

0

1

n

n

n

p

p p

p
n

p

k k p

k p p



















 

  





 

 

This is a result of the following deduction 

 

(3-45) 

       

     

       

       

     

         

1 1 1

1 1

1 2 1

1 2 1

1 2 2 1

2 2 1 2 2 3 1

( 1) ( 1) 1 ( 1) 1

2 ( 2) ( 1)

n

n

p

n n n

n n

p p p p p

k k k k k p

k k k k p

k p k p k p k p

k p k p k p k p

k p p k p p k p p p

k k p k p k p p k p p

  

 

      

       

          

          

           

        

 

 

The binomial coefficient in discussion, 
 

!

np

nn

z z

pp

 
 

 
 

, now can be rewritten as: 

 

(3-46) 

 

 

1

1

1

1

n

n

p
n

p

pn

p

z p pz

p
p

















  
 

 
 





 

 

By the way: this representation leads to a nice identity for the product of the binomial coefficients 

involved. In fact we get 

1 1

1 1

n n n
p p

n

z p z p p

p p p 

  

 

     
    

     
     

  . 

 

For the denominator of (3-46) we can prove a proposition very analogous to that of Lemma 3-2. 

Lemma 3-3 

For prime numbers p  and 0 ,m n  , the following congruency holds true 

 

(3-47)      
11

1
1

1

1

1 mod

n
n np p p

np
p

np

z
p z p p p

p











 
     

 
  

 

Proof: 

Let ( )F n  denote the left hand side of (3-47). With respect to (3-2), we have  

 



… 
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(3-48) 

 

 

   

01

1

1

1

1

(1)

1 mod

p p
p

p

p

p

p

F p z p p

z

p

z
p

p
















  



 
   

 



 

 

for 1n  . For the induction step 1n n  , we conclude as follows: 

 

(3-49) 

 

 

 

   

1

1

1

1

1

11

1

11

1

1

1

1

1

1

1

1 1

( 1)

1

1 mod

n
n

n
n

n

n
n

n

n
n n

n

p p
np

p

np p
ppp

p p
p np

p p p
p np

F n p z p p

z p p
p p

p

z
p p p

p

z
p p p p

p







 











































 

   

 


 
    

 

  
      

  







 

 

 

Herein, the last step can be performed as a consequence of (3-2) again. It follows  

 

(3-50) 

 

 

     

1

1

1

1

1

1

1

1

1

( 1) 1

1

1
1 1 mod

n
n

n

n
n

n

n
n

p p
p np

p p
p np

p

p
p

p
n

z
F n p p

p

z
p p p

p

z
p

p p





























  
      

  

  
     

  

  
     

  



  

 

Due to 
1

1
n n

z z

p p p 

    
    

    
 we come to the necessary conclusion in order to confirm the induction 

step. 

 

(3-51)    
1 1

1
1

( 1) 1 mod

np

p
n

z
F n p

p

 




 
    

 
 

 
 

Thus, Theorem 3-1 is a consequence of (3-46), (3-47) and (3-17) (setting 0m   there). In fact, we get  
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(3-52) 

 

 

 

 

 

1

1

1

1

1

1

1

1

1

1

1

1

1

1

mod

n
n

n
n

n

n

p p
np

p

pn p
p

p

p

p
n

p

p

n

p z p pz

p
p p

z

p

z
p

p



































   
 

 
 



 
  

 




 
  
 





 

 

This is the desired result compliant with Theorem 3-1 because of  modn n

z
a p

p

 
  
 

.  

 

Incidentally, the assertion made in Theorem 3-1 cannot be extended to general natural bases. This can 

be seen in the following way: Let 1p   be a non-prime radix and suppose that q  is the minimal 

prime factor of p . Based on the definition :z p q  , thereafter we have the canonical base-p 

representation 
1 01z p q p    , particularly 1 1a  . Therewith we have  

 

1

1

1

z p q p q p qp q

qp p q q

          
         

              

 

 

For the binomial coefficient on the right it exists an integer number   such that 

 

 

  
 

1 ( 1) ( 2)( 1)

1 !1

1 !

1 !

p q p q p p

qq

p q

q



        
 

   

 




 

 

Plainly, if 2q   then 
1

1
1

p q
p

q

  
  

  

. According to the precondition,  1 !q   and p  are 

relatively prime, provided 2q  . Since 
  

 

1 !

1 !

p q

q

  


 is an integer, it follows  that  1 !q   is a 

factor of  . Therefore 
 

:
1 !p


 


 is an integer too. So that, in both cases ( 2q   and 2q  ) we 

find  

 
1

1
z p q

p
qp


  

   
 
 
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which implies  1
1

1 1 mod
z p

a p
qp

 
    

 
 

. As a result, the proposition of Theorem 3-1 cannot 

be applied to non-prime radixes.  

 

 

Moreover, we can use the main result of this section in order to determine the integer residue modulo a 

prime p  of special binomial coefficients. If we consider 
1: ( )      n n nz m k lp p m kp lp  with 

k p  and  nm p , then we obtain 

1

(mod )

  
 
 
 

n n

n

m kp lp
k p

p
 by Theorem 3-1. 

 

In general we have 
1

1
nn n

z zz

pp p

   
   

      

. By substitution of 
1( )    n n nz k lp p kp lp , again 

with k p  , this leads to 
( ) ( ) 1

( )
1

     
    
      

n n

n n

k lp p k lp p
k lp

p p
. On account of Theorem 3-1 the 

left hand side is congruent to the residue class  modk p . This implies 

 
( ) 1

1 mod
1

  
  
  

n

n

k lp p
p

p
, only provided 0k . 

 

 

 


